Coordinated Degradation of Replisome Components Ensures Genome Stability upon Replication Stress in the Absence of the Replication Fork Protection Complex
نویسندگان
چکیده
The stabilization of the replisome complex is essential in order to achieve highly processive DNA replication and preserve genomic integrity. Conversely, it would also be advantageous for the cell to abrogate replisome functions to prevent inappropriate replication when fork progression is adversely perturbed. However, such mechanisms remain elusive. Here we report that replicative DNA polymerases and helicases, the major components of the replisome, are degraded in concert in the absence of Swi1, a subunit of the replication fork protection complex. In sharp contrast, ORC and PCNA, which are also required for DNA replication, were stably maintained. We demonstrate that this degradation of DNA polymerases and helicases is dependent on the ubiquitin-proteasome system, in which the SCF(Pof3) ubiquitin ligase is involved. Consistently, we show that Pof3 interacts with DNA polymerase ε. Remarkably, forced accumulation of replisome components leads to abnormal DNA replication and mitotic catastrophes in the absence of Swi1. Swi1 is known to prevent fork collapse at natural replication block sites throughout the genome. Therefore, our results suggest that the cell elicits a program to degrade replisomes upon replication stress in the absence of Swi1. We also suggest that this program prevents inappropriate duplication of the genome, which in turn contributes to the preservation of genomic integrity.
منابع مشابه
Proteasome-dependent degradation of replisome components regulates faithful DNA replication
The replication machinery, or the replisome, collides with a variety of obstacles during the normal process of DNA replication. In addition to damaged template DNA, numerous chromosome regions are considered to be difficult to replicate owing to the presence of DNA secondary structures and DNA-binding proteins. Under these conditions, the replication fork stalls, generating replication stress. ...
متن کاملDestabilization of the replication fork protection complex disrupts meiotic chromosome segregation
The replication fork protection complex (FPC) coordinates multiple processes that are crucial for unimpeded passage of the replisome through various barriers and difficult to replicate areas of the genome. We examine the function of Swi1 and Swi3, fission yeast's primary FPC components, to elucidate how replication fork stability contributes to DNA integrity in meiosis. We report that destabili...
متن کاملMaintain Genomic Stability: Multitask of DNA Replication Proteins
The genome is highly vulnerable to damage, especially during DNA replication because chromosome is decondensed and the replication forks are extremely sensitive to DNA damage agents. The eukaryotic replisome, which consists of a large number of replication fork-associated proteins, is essential for the elongation of replication forks during DNA replication. This complex contains DNA polymerases...
متن کاملThe Replisome-Coupled E3 Ubiquitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate Genotoxic Stress
Faithful DNA replication and repair requires the activity of cullin 4-based E3 ubiquitin ligases (CRL4), but the underlying mechanisms remain poorly understood. The budding yeast Cul4 homologue, Rtt101, in complex with the linker Mms1 and the putative substrate adaptor Mms22 promotes progression of replication forks through damaged DNA. Here we characterized the interactome of Mms22 and found t...
متن کاملCharacterization of a Novel MMS-Sensitive Allele of Schizosaccharomyces pombe mcm4+
The minichromosome maintenance (MCM) complex is the conserved helicase motor of the eukaryotic replication fork. Mutations in the Mcm4 subunit are associated with replication stress and double strand breaks in multiple systems. In this work, we characterize a new temperature-sensitive allele of Schizosaccharomyces pombe mcm4+ Uniquely among known mcm4 alleles, this mutation causes sensitivity t...
متن کامل